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Abstract: In this paper, transport equation with continuous energy, nonhomogeneous medium and abstract bound-
ary conditions is studied in slab geometry. It is to prove that |Imλ| ∥ K(λI − BH)−1K ∥ (|Imλ| → +∞)
is bounded in the trip Γε, and the spectrum of transport operator AH consists of only finite isolated eigenvalues
with a finite algebraic multiplicities in trip Γε. The main methods rely on operators theory, resolvent operators and
comparison operators approach.
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1 Related Knowledge
In this paper, we are concerned with the transport
equation with continuous energy, nonhomogeneous
medium and abstract boundary conditions in slab ge-
ometry. The specific model is as follow

∂ψ(x, v, µ, t)

∂t
=

− µ
∂ψ(x, v, µ, t)

∂x
− σ(x, v)ψ(x, v, µ, t) (1)

+

∫
E
dv′
∫ 1

−1
k(x, v, µ, v′, µ′)ψ(x, v′, µ′, t)dµ′,

with the initial condition

ψ(x, µ, v, 0) = ψ0(x, µ, v), (2)

where the function ψ(x, v, µ) represents the number
density of gas particles having the position x, the par-
ticle velocity v and the direction cosine of propagation
µ. here x ∈ [−a, a] for a parameter 0 < a < +∞,
v, v′ ∈ E = [vm, vM ], 0 < vm < vM < +∞, and
the vm and vM are called, respectively, minimum ve-
locity and maximum velocity, and µ, µ′ ∈ [−1, 1], the
function σ(., .) is called the collision frequency, and
the function k(., ., ., ., .) is called the scattering kernel.
The abstract boundary conditions are modeled by

ψi = Hψ0, (3)

here, H is a linear operator in boundary space.
Since Lehner and Wing made some creating work

in [1] in 1950’s, the research of spectral distribution

of the transport equation have been interesting topic
in mathematics, physics, biology and sociology. La-
trach and Dehici [2] investigated some spectral prop-
erties of time-dependent anisotropic transport equa-
tion with periodic and perfecting boundary condition-
s, using the perturbation theory of strongly continu-
ous semigroups. In fact, let X be a Banach space,
and the streaming operator B generates a Co semi-
group (U(t)t≥0). It is well known that if K ∈ L(X)
is bounded linear operators, then B + K generates a
strongly continuous semigroup (V (t)t≥0), where

V (t) =
n−1∑
j=0

Uj(t) +Rn(t), (4)

where U0(t) = U(t), and

Ui(t) =

∫ t

0
U(s)KUj−1(t− s)ds, j = 1, 2, ..., (5)

and the remainder term Rn(t) can be expressed by

Rn(t) =
+∞∑
j=n

Uj(t)

=

∫
t1+···+tn≤t,ti≥0

U(t1)KU(t2)K · · ·U(tn)

×KV (t− t1 · · · − tn)dt1 · · · dtn, (6)

where if n = 2, we can get

R2(t) =

∫
t1+t2≤t,t1≥0,t2≥0

U(t1)KU(t2)

×KV (t− t1 − t2)dt1dt2. (7)

WSEAS TRANSACTIONS on MATHEMATICS Hongxing Wu, Shenghua Wang, Dengbin Yuan

E-ISSN: 2224-2880 136 Volume 15, 2016



The above method was named by semigroup pertur-
bation approach, and this approach was used by many
authors (see, e.g., [3]-[7]). Some authors develope-
d the perturbation technique to the essential spectral
radius of transport operators (see, e.g., [8]-[12]) .

Recently, Wang and Ma in [13] discussed the
transport operator of anisotropic continuous energy
and homogeneous with periodic boundary condition-
s in slab geometry in L2 space. They proved that
the streaming operator B generates a C0 semigroup
(U(t)t≥0), the transport operator A generates a C0

semigroup, and the second-order remained termR2(t)
of the Dyson-Phillips expansion (4) of the C0 semi-
group is compact inL2 space. Hence the spectra of the
transport operator in some vertical strip Γ consists on-
ly of finite many isolated eigenvalues that has a finite
algebraic multiplicity. Wang and Wu in [14] discussed
the transport operator with anisotropic continuous en-
ergy and nonhomogeneous with general boundary
conditions in slab geometry in Lp(1 ≤ p <∞) space.
They proved that the streaming operator B generates
a C0 semigroup (U(t)t≥0), where U(t) is of the form

U(t)φ(x, v, u) =
∑
n≥0

α2n

× exp
(
− 1

|µ|

(
2n

∫ a

−a
+sgn(µ)

∫ x

x′

)
σ(ξ, v)dξ

)
×φ(sgn(µ)4na+ x− µt, v, µ)

×χ[(sgn(µ)x+(4n−1)a)/|µ|,(sgn(µ)x+(4n+1)a)/|µ|](t)

+
∑
n≥0

α2n+1 exp
(
−2n

|µ|

∫ a

−a
σ(ξ, v)dξ

)
(8)

× exp
(
− 1

|µ|
sgn(µ)(

∫ x

−a
+

∫ x′

−a
)σ(ξ, v)dξ

)
×φ(−sgn(µ)(4n+ 2)a− x+ µt, v,−µ)
×χ[(sgn(µ)x+(4n+1)a)/|µ|,(sgn(µ)x+(4n+3)a)/|µ|](t),

the transport operator A generates a C0 semigroup,
and the second-order remained term R2(t) of the
Dyson-Phillips expansion of the semigroup is com-
pact in Lp(1 < p <∞) space and weakly compact in
L1 space, It is similar to the result of [13].

It is well-known that if the transport equation with
the specific boundary conditions, or abstract bound-
ary conditions, then the bounded perturbation meth-
ods will fail. This is because the boundary operator
is a unbounded linear operator. So we have to use
the resolvent analysis approach to study the transport
equation. Latrach and Megdiche in [15] discussed
the transport equation with anisotropic and abstrac-
t boundary conditions in slab geometry. Under some
assumption that, for r ∈ [0, 1)

lim
|ℑλ|→+∞

| ℑλ |r∥ K(λI −B)−1K ∥= 0, (9)

uniformly on some vertical strip, they derived various
descriptions of the large time behavior of solutions.
Latrach et al. in [16] discussed the transport equa-
tion with reentry boundary conditions in slab geome-
try, they derived conditions that ensure the compact-
ness of the remainder term Rn(t) for some integer n,
and got the large time asymptotic behavior of the solu-
tion to the one-dimensional transport equation. Late-
ly, some authors discussed the transport equation with
anisotropic continuous energy and homogeneous in
slab geometry, and obtained essential spectrum and
isolated spectrum of the transport equation (see, e.g.,
[17]-[24], [30]-[32]).

In the past years, some authors described the time
asymptotic behavior of the solution of a one-velocity
transport operator without restriction on the initial da-
ta in sphere (see, e.g., [25, 26]). Of course, there are
some progresses about the spectral of bizarre trans-
port equation (see, e.g., [27, 28]). The spectral anal-
ysis of transport operator in growing cell population
(see, e.g., [33-35]). Recent, Abdelmoumen et al. in
[29] discussed the transport operator with anisotrop-
ic in sphere, and described the large time behavior of
solutions to an abstract Cauchy problem under some
assumptions. They proved that there exists an integer
m0 and r0 ∈ [0, 1) such that

| ℑλ |r0∥ [(λI −B)−1K]m0 ∥, (10)

is bounded uniformly in some vertical strip. A ques-
tion is what spectral distribution in slab geometry is
under the above condition. In this paper, we will dis-
cuss, in Lp(1 ≤ p < +∞) space, the transport equa-
tion with continuous energy nonhomogeneous medi-
um and abstract boundary conditions in slab geome-
try. We will prove that operator

| ℑλ |∥ K(λI −BH)−1K ∥, (|ℑλ| → +∞), (11)

is bounded on a vertical strip Γε, and the spectrum
of transport operator in the strip Γε is composed of fi-
nite many isolated eigenvalues of finite algebraic mul-
tiplicities.

Let us introduce some notion and notations, and
make precise the function setting of the problem. Let
space be

X = Lp(D, dxdvdµ), (12)

the norm is defined by

∥ψ∥X =
(∫ a

−a

∫
E

∫ 1

−1
|ψ(x, v, µ)|pdxdvdµ

) 1
p
,

(13)
where D = [−a, a]× E × [−1, 1], p ∈ [1,+∞).
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We define the following sets representing the in-
coming and the outgoing boundary of the phase space

D0 = D0
1 ∪D0

2 =

{−a} × E × [−1, 0] ∪ {a} × E × [0, 1], (14)

Di = Di
1 ∪Di

2 =

{−a} × E × [0, 1] ∪ {a} × E × [−1, 0]. (15)

Moreover, we introduce the following boundary s-
paces

X0 = Lp(D
0, |µ|dvdµ) ∼ Lp(D

0
1, |µ|dvdµ)

⊕Lp(D
0
2, |µ|dvdµ)

= X0
1 ⊕X0

2 , (16)

Xi = Lp(D
i, |µ|dvdµ) ∼ Lp(D

i
1, |µ|dvdµ)

⊕Lp(D
i
2, |µ|dvdµ)

= Xi
1 ⊕Xi

2, (17)

endowed with the norm

∥φ0∥X0 =
(
∥φ0

1∥
p
X0

1
+ ∥φ0

2∥
p
X0

2

) 1
p

=
(∫

E
dv

∫ 0

−1
|φ(−a, v, µ)|p|µ|dµ

+

∫
E
dv

∫ 1

0
|φ(a, v, µ)|p|µ|dµ

) 1
p
, (18)

∥φi∥Xi =
(
∥φi

1∥
p

Xi
1
+ ∥φi

2∥
p

Xi
2

) 1
p

=
(∫

E
dv

∫ 1

0
|φ(−a, v, µ)|p|µ|dµ

+

∫
E
dv

∫ 0

−1
|φ(a, v, µ)|p|µ|dµ

) 1
p
, (19)

where ∼ means the natural identification of the above
spaces. We define the streaming operator BH by

BHψ(x, v, µ) = −µ∂ψ(x, v, µ)
∂x

−σ(x, v)ψ(x, v, µ), (20)

where

D(BH) =

{
ψ ∈ X

∣∣∣∣µ∂ψ∂x ∈ X,ψi = Hψ0

}
,

(21)

where σ(x, v) is a non-negative and measurable func-
tion, ψ0 = (ψ0

1, ψ
0
2)

⊤, and ψi = (ψi
1, ψ

i
2)

⊤ with ψ0
1 ,

ψ0
2 , ψi

1 and ψi
2 are given by

ψi
1(v, µ) = ψ(−a, v, µ), (22)

ψi
2(v, µ) = ψ(a, v, µ), (23)

ψ0
1(v, µ) = ψ(−a, v, µ), (24)

ψ0
2(v, µ) = ψ(a, v, µ). (25)

Moreover, we define the disturbance operators K by

Kψ(x, v, µ) =

∫
E
dv′
∫ 1

−1

×k(x, v, µ, v′, µ′)ψ(x, v′, µ′)dµ′. (26)

So, we can define the transport operator AH by

AH = BH +K, D(AH) = D(BH). (27)

Setting
σ0 = essinf{σ(x, v)}.

Let φ ∈ X and consider the resolvent equation for
BH

(λI −BH)ψ = φ. (28)

Thus, for ℜλ > −σ0,, the solution of (28) is formally
given by

ψ(x, v, µ)

= ψ(−a, v, µ) exp
(−1

µ

∫ x

−a
(λ+ σ(ξ, v))dξ

)
+

1

µ

∫ x

−a
exp

(−1

µ

∫ x

x′
(λ+ σ(ξ, v))dξ

)
×φ(x′, v, µ)dx′, µ ∈ (0, 1), (29)

ψ(x, v, µ)

= ψ(a, v, µ) exp
( 1
µ

∫ a

x
(λ+ σ(ξ, v))dξ

)
− 1

µ

∫ a

x
exp

( 1
µ

∫ x′

x
(λ+ σ(ξ, v))dξ

)
×φ(x′, v, µ)dx′, µ ∈ (−1, 0). (30)

For x = ±a, we can get

ψ(a, v, µ)

= ψ(−a, v, µ) exp
(−1

µ

∫ a

−a
(λ+ σ(ξ, v))dξ

)
+

1

µ

∫ a

−a
exp

(−1

µ

∫ a

x′
(λ+ σ(ξ, v))dξ

)
×φ(x′, v, µ)dx′, (31)
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ψ(−a, v, µ)

= ψ(a, v, µ) exp
( 1
µ

∫ a

−a
(λ+ σ(ξ, v))dξ

)
− 1

µ

∫ a

−a
exp

( 1
µ

∫ x′

−a
(λ+ σ(ξ, v))dξ

)
×φ(x′, v, µ)dx′. (32)

Now, we define operators Pλ, Qλ, Dλ and Eλ as fol-
low

Pλ : Xi → X0; Pλφ = (P+
λ φ, P

−
λ φ), (33)

where

P+
λ φ(a, v, µ) = φ(−a, v, µ)

× exp
(−1

µ

∫ a

−a
(λ+ σ(ξ, v))dξ

)
, (34)

and

P−
λ φ(−a, v, µ) = φ(a, v, µ)

× exp
( 1
µ

∫ a

−a
(λ+ σ(ξ, v))dξ

)
; (35)

Qλ : Xi → X; Qλφ = (Q+
λ φ,Q

−
λφ), (36)

where

Q+
λ φ(−a, v, µ) = φ(−a, v, µ)

× exp
(−1

µ

∫ x

−a
(λ+ σ(ξ, v))dξ

)
, (37)

and

Q−
λ φ(a, v, µ) = φ(a, v, µ)

× exp
( 1
µ

∫ a

x
(λ+ σ(ξ, v))dξ

)
; (38)

Dλ : X → X0; Dλφ = (D+
λ φ,D

−
λ φ), (39)

where

D+
λ φ(x, v, µ) =

1

µ

∫ a

−a
φ(x′, v, µ)

× exp
(−1

µ

∫ a

x′
(λ+ σ(ξ, v))dξ

)
dx′, (40)

and

D−
λ φ(−a, v, µ) =

1

µ

∫ a

−a
φ(x′, v, µ)

× exp
( 1
µ

∫ x′

−a
(λ+ σ(ξ, v))dξ

)
dx′; (41)

Eλ : X → X; Eλφ = (E+
λ φ,D

−
λ φ), (42)

where

E+
λ φ(x, v, µ) =

1

µ

∫ x

−a
φ(x′, v, µ)

× exp
(−1

µ

∫ x

x′
(λ+ σ(ξ, v))dξ

)
dx, (43)

and

E−
λ φ(−a, v, µ) =

1

µ

∫ a

x
φ(x′, v, µ)

× exp
( 1
µ

∫ x′

x
(λ+ σ(ξ, v))dξ

)
dx. (44)

We assume that the boundary operator H satisfies the
following condition.
Assumption O1: H : X0 → Xi,

H

(
u1
u2

)
=

(
0 H12

H21 0

)(
u1
u2

)
. (45)

where{
H12 = αJ1 + βL1 : X

0
2 → Xi

2;
H12 ∈ L(X0

2 , X
i
2),

(46){
H21 = αJ2 + βL2 : X

0
1 → Xi

2;
H21 ∈ L(X0

1 , X
i
2),

(47)

α, β ∈ R+, J1 and J2 are compact operators. More-
over

L1u(−a, v, µ) = u(a, v, µ), (48)

L2u(a, v, µ) = u(−a, v, µ). (49)

So, for ℜλ > −σ0, we get

(λI −BH)−1 = χ(0,1)(µ)R
+(λI,BH)

+ χ(−1,0)(µ)R
−(λI,BH),(50)

where,

R+(λI,BH)

=
∑
n≥0

Q+
λH12(P

+
λ H12)

nD+
λ + E+

λ , (51)

R−(λI,BH)

=
∑
n≥0

Q−
λH21(P

−
λ H21)

nD+
λ + E−

λ . (52)

Assumption O2: Operator K is a regular operator in
X . So it can be approximated in the uniform operator
topology by operators. Thus

Kφ(x, v, µ) =
∑
i∈I

∫
E
dv′
∫ 1

−1
θi(x)fi(v, µ)

×gi(v′, µ′)φ(x, v′, µ′)dµ′, (53)
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where θi(·) ∈ L∞([−a, a]), fi(·, ·) ∈ L1(E ×
[−1, 1]), gi(·, ·) ∈ L∞(E × [−1, 1]), I is finite set.
Setting

λ0 =

{
−σ0, ∥ H ∥≤ 1,
−σ0 + 1

2a log(∥ H ∥), ∥ H ∥> 1.
(54)

Lemma 1. [15] If the assume O1 is satisfied, then,
for ℜλ > −σ0, we have (λI−BH)−1 is bounded and

||(λI −BH)−1|| ≤ 1

Reλ+ σ0
. (55)

Lemma 2. [5] If for any ε > 0, there exists am ∈ N ,
η, such that [(λI −BH)−1K]m is compact, and

lim
|ℑλ|→+∞

∥ [(λI −BH)−1K]m ∥= 0. (56)

Then, there exists at most finitely many isolated eigen-
values ofAH in the strip {λ ∈ C; ℜλ ≥ η+ε} where
η is type of C0 semigroup generated by streaming op-
erator BH , which are of finite algebraic multiplicity.

2 Main Result
In this section, we will give the main results of this
paper. Setting

Γε = {λ ∈ C; ℜλ ≥ −σ0 + ε}(ε > 0). (57)

Theorem 3. If assumptions O1 and O2 are satisfied,
then

| ℑλ |∥ K(λI −BH)−1K ∥, (58)

is uniformly bounded on Γε.

Proof. We finish the proof by the following serval
steps.

Step 1. Because of

∥ K(λ−BH)−1K ∥
≤ ∥ KE+

λ K ∥ + ∥ KE−
λ K ∥

+
∑
n≥0

∥ KQ+
λH12(P

+
λ H12)

nD+
λK ∥

+
∑
n≥0

∥ KQ−
λH21(P

−
λ H21)

nD+
λK ∥ .

(59)

So, if we prove (57) is bounded uniformly on Γε, we
only prove

| ℑλ |∥ KE+
λK ∥, (60)

| ℑλ |∥ KE−
λK ∥, (61)

| ℑλ |
∑
n≥0

∥ KQ+
λH12(P

+
λ H12)

nD+
λK ∥, (62)

| ℑλ |
∑
n≥0

∥ KQ−
λH21(P

−
λ H21)

nD−
λK ∥ . (63)

are all bounded uniformly on Γε.

Step 2. Prove equation (60) is bounded uniformly on
Γε. For all φ ∈ X ,we get

E+
λ φ(x, v, µ) =

1

µ

∫ x

−a
φ(x′, v, µ)

× exp
(−1

µ

∫ x

x′
(λ+ σ(ξ, v))dξ

)
dx′

=
1

µ

∫ x

−a
φ(x′, v, µ)

× exp
(−1

µ

[
(x− x′)λ+

∫ x

x′
λ+ σ(ξ, v)dξ

])
dx′.

(64)

The change of s = x−x′

µ gives

E+
λ φ(x, v, µ) =

∫ +∞

0
φ(x− sµ, v, µ)χ(0,x+a

µ
)(s)

× exp
(
− λs−

∫ x

x−sµ
σ(ξ, v)dξ

)
ds. (65)

Now consider the sequence of operators E+
λ,εn

, where

Eλ,εnφ(x, v, µ)

=

∫ +∞

εn

φ(x− sµ, v, µ)χ(0,x+a
µ

)(s)

× exp
(
− λs−

∫ x

x−sµ
σ(ξ, v)dξ

)
ds, (66)

where (εn)n∈N is a sequence of non-negative real
numbers which converge to zero as n → ∞. Clear-
ly, the sequence (Eλ,εn)n∈N converges to E+

λ , in the
operator topology, uniformly on Γε as n → ∞. So, it
suffices to prove that, for ε > 0,

| ℑλ |∥ KE+
λ,εK ∥,

is bounded uniformly on Γε. Because of

KE+
λ,εKφ(x, v, µ)

=

∫
E
dv′
∫ 1

0
dµ′h(v′, µ′)f(v, µ)χ(0,x+a

µ′ )(s)

× exp
(
− λs−

∫ x

x−sµ′
σ(ξ, v)dξ′

)
×
∫ +∞

ε

∫
E

∫ 1

−1
θ(x− sµ′)g(v′′, µ′′)

×θ(x)φ(x− sµ′, v′′, µ′′)dsdv′′dµ′′. (67)
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Setting t = x− µ′s, we get

KE+
λ,εKφ(x, v, µ)

= θ(x)

∫
E
dv′
∫ x

−a
dµ′h

(
v′,

x− t

s

)
f(v, µ)

× exp
(
− λs−

∫ x

t
σ(ξ, v)dξ′

)
×
∫ +∞

ε
dsφ(t′, v′′, µ′′).χ(x−t,+∞)(s)

×
∫
E
θ(t)g(v′′, µ′′)dv′′

∫ 1

−1
dµ′′ (68)

Putting
KE+

λ,εK = A1AεA2, (69)

where A1 : Lp(−a, a) → X ,

A1φ(x) = θ(x)f(v, µ)φ(x); (70)

A2 : Lp(−a, a) → X ,

A2φ(x, v, µ)

=

∫
E
dv

∫ 1

−1
θ(x)g(v, µ)φ(x, v, µ)dµ; (71)

Aε : Lp(−a, a) → Lp(−a, a),

Aεφ(x) =

∫ x

−a
dt

∫
E
dv

∫ +∞

ε

ds

s

× exp
[
− λs−

∫ x

t
σ(x, ξ)dξ

]
×h
(
v,
x− t

s

)
φ(t)χ(x−t,+∞)(s); (72)

and Aε,n : Lp(−a, a) → Lp(−a, a),

Aε,nφ(x) =

∫ x

−a
dt

∫
E
dv

∫ +∞

ε
lx−t,v,n(s)

× exp
[
− (λ+ σ0 −

ε

2
)s
]
ds

×h
(
v,
x− t

s

)
φ(t)χ(x−t,+∞)(s), (73)

where lx−t,v,n(·) converges to φx−t,v(·).a.e. Because
operators A1 and A2 are bounded and uniformly on
Γε, so, it suffices to prove that, for ε > 0, | ℑλ |p∥
Aε ∥p is bounded uniformly on Γε. According to
Lemma 1 of [15], it holds that

| ℑλ |p∥ Aε,n ∥p, (n ∈ N), (74)

is bounded uniformly on Γε. For all φ ∈
Lp(−a.a), n ∈ N , we get

∥ Aε,nφ ∥p=
∫ a

−a
dx
∣∣∣ ∫ x

−a
dt

∫
E
dv

∫ +∞

ε

× exp
[
−
(
λ+ σ0 −

ε

2

)
s
]
lx−t,v,n(s)

×h
(
v,
x− t

s

)
φ(t)χ(x−t,+∞)(s)ds

∣∣∣p
≤

∫ 2a

−2a
dx
∣∣∣ ∫ x

−a
dt

∫
E
dv

∫ +∞

ε

× exp
[
−
(
λ+ σ0 −

ε

2

)
s
]
lx,v,n(s)

×h
(
v,
x

s

)
φ(t)χ(x−t,+∞)(s)ds

∣∣∣p. (75)

The use of the Hölder inequality gives∣∣∣ ∫ x

−a
dt

∫
E
dv

∫ +∞

ε
exp

[
− (λ+ σ0 −

ε

2
)s
]
·

×lx,v,n(s)h(v,
x

s
)φ(t)χ(x−t,+∞)(s)ds

∣∣∣p
≤
[ ∫ a

−a
dt
∣∣∣ ∫

E
dv

∫ +∞

ε
exp

[
− (λ+ σ0 −

ε

2
)s
]
·

×lx,v,n(s)h(v,
x

s
)
∣∣∣qds] p

q

∫ a

−a
| φ(t) |p dt

≤ (2a)
p
q

∣∣∣ ∫
E
dv

∫ +∞

ε
exp

[
− (λ0 + σ − ε

2
)s
]
·

×lx,v,n(s)h(v,
x

s
)ds
∣∣∣p ∥ φ ∥p .

(76)

Use of the Hölder inequality again, we get

∥ Aε,n ∥p≤ (2a)
p
q

∫ 2a

−2a
dx
∣∣∣ ∫

E
dv

∫ +∞

ε

× exp
[
− (λ+ σ0 −

ε

2
)s
]

×lx,v,n(s)h(v,
x

s
)φ(t)χ(x,+∞)(s)ds

∣∣∣p
≤ (2a)

p
q

∫ 2a

−2a
dx

∫
E
dv
∣∣∣ ∫ +∞

ε

× exp
[
− (λ+ σ0 −

ε

2
)s
]

×lx,v,n(s)h(v,
x

s
)φ(t)χ(x,+∞)(s)ds

∣∣∣p. (77)

So, it suffices to prove that, for ε > 0,

| ℑλ |p
∫ 2a

−2a
dx

∫
E
dv |

∫ +∞

ε
ds

× exp[−(λ+ σ0 −
ε

2
)]slx,v,n(s)

×h(v, x
s
)φ(t)χ(x,+∞)(s) |p, (78)
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is bounded uniformly on Γε. In fact, for ∀n ∈ N ,
x ∈ (−2a, 2a) and v ∈ E be fixed, we define

Wx,v(·) : (ε,+∞) → R, (79)

s 7→ lx,v,n(s)h(v,
x

s
), (80)

where lx,v,n(s) and h(v, xs ) are simple functions. Set-
ting (si)1≤i≤m, for ∀i ∈ {1, 2, · · ·,m − 1},s ∈
[si, si+1), we get

Wx,v(·) =Wx,v(si), (81)

so we can get∫ +∞

ε
exp(−(λ+ σ0 −

ε

2
)s)Wx,v(s)ds

=

m−1∑
i=1

Gx,v(si)

∫ si+1

si

exp(−(λ+ σ0 −
ε

2
)s)ds

=
m−1∑
i=1

(
exp(−(λ+ σ0 −

ε

2
)si)

− exp(−(λ+ σ0 −
ε

2
)si+1)

)
× 1

λ+ σ − ε
2

Wx,v(si).

So

|
∫ +∞

ε
Wx,v(s)ds |≤

2(m− 1) sup | h(·, ·) |
ε | ℑλ |

,

(82)
and

| ℑλ |p
∫ 2a

−2a
dx

∫
E
dv
∣∣∣ ∫ +∞

ε
lx,v,n(s)h(v,

x

s
)

× exp(−(λ+ σ0 −
ε

2
)s)φ(t)χ(x,+∞)(s)

∣∣∣p
≤| ℑλ |p

∫ 2a

−2a
dx

∫
E
dv(2(m− 1)

× sup | h(·, ·) |)pε−p| ℑλ |−p

≤ 4aM(2(m− 1) sup | h(·, ·) |)pε−p| ℑλ |−p
,

(83)

where M = vM − vm. Since

4aM(2(m− 1) sup | h(·, ·) |)pε−p| ℑλ |−p
,

is bounded and uniformly on Γε. This ends the step 2.
Since the (61) and (60) have the same mode, sim-

ilarly, we can get the equation (61) is bounded uni-
formly on Γε.

Step 3. (62) is bounded uniformly on Γε. Since
(P+

λ H12)
n can be expressed by

(P+
λ H12)

n =
2n∑
j=1

Pj , (84)

where each Pj is the product of n factors involving
both αP+

λ T1 and βP+
λ L1 except the term

P2n = (βP+
λ L1)

n. (85)

So, for j ∈ {1, 2, · · ·, 2n−1}, the operator T1 appears
at least once in the expression of Pj . While

∥ KQ+
λH12PjD

+
λK ∥

≤ ∥ KQ+
λH12 ∥ · ∥ PjD

+
λK ∥, (86)

where j ∈ {1, 2, · · ·, 2n− 1}, so if we prove the equa-
tion (62) is bounded and uniformly on Γξ. We only
need to prove

| ℑλ |∥ PjD
+
λK ∥, (87)

| ℑλ |∥ KQ+
λH12P2nD

+
λK ∥, (88)

are all bounded uniformly on Γε, where j ∈ {1, 2, · ·
·, 2n − 1}. In fact, according to the hypotheses, there
exists k ∈ {1, 2, · · ·, n− 1}, such that

Pj = QjP
+
λ T1(P

+
λ L1)

k, (89)

where Qj is bounded and uniformly on Γε. Since

∥ QjP
+
λ T1(P

+
λ L1)

kD+
λK ∥

≤ ∥ QjP
+
λ ∥ · ∥ T1(P+

λ L1)
kD+

λK ∥, (90)

so, it is sufficient to prove

| ℑλ |∥ T1(P+
λ L1)

kD+
λK ∥, (91)

is bounded and uniformly on Γε. Since J1 is compact,
it is sufficient to establish the result for an operator of
rank one, that is T1 : φ(a, v, µ) → T1φ(−a, v, µ),

T1φ(−a, v, µ) = θ(x)

∫
E
dvf(v, µ)

×
∫ 1

0
g(v′, µ′)φ(a, v′, µ′) | µ′ | dµ′, (92)

where f(·, ·), g(·, ·) are measurable simple functions.
For φ ∈ X ,

T1(P
+
λ L1)

kD+
λKφ(x, v, µ)

= θ(x)f(v, µ)

∫
E
dv′
∫ 1

0
dµ′g(v′, µ′)

×f(v′, µ′)
∫ a

−a
dxθ(x′) exp

[−1

µ′

∫ x

x′

×
(
λ− σ(ξ, v)

)
dξ′((2k + 1)a− x)

] ∫
E
dv′′

×
∫ 1

−1
g(v′′, µ′′)φ(x− sµ′, v′′, µ′′)dµ′′.
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(93)

Now, we define the operators by

B1 : φ ∈ X → θ(x)

∫
E
dv

×
∫ 1

−1
g(v, µ)φ(x, v, µ)dµ, (94)

B2 : γ ∈ R→ γη(v, µ) ∈ Li
p,1, (95)

Bk : φ ∈ Lp(−a, a) →
∫
E
dv

∫ 1

0
dµ

×f(v, µ)g(v, µ)
∫ a

−a
exp

[(2k + 1)a− x

µ

×θ(x)
∫ x

x′

(
λ− σ(ξ, v)

)
dξ
]
φ(x)dx, (96)

so, we can get

T1(P
+
λ L1)

kD+
λK = B2BkB1.

Clearly,

∥ T1(P+
λ L1)

kD+
λK ∥≤∥ B2 ∥ · ∥ Bk ∥ · ∥ B1 ∥,

because of B1, B2, and Bk are all bounded, moreover
B1 and B2 are independent of λ, we only need to
prove that | ℑλ |∥ Bk ∥ is bounded uniformly on
Γε. Now, we set φ ∈ Lp((−a, a); dx) and φ̄ denote
by its trivial extension to R, soBkφmay be written in
the from

Bkφ =

∫
R
Fλ((2k + 1)a− x)φ̄dx

= (Fλ ∗ φ̄)((2k + 1)a).

the Young inequality gives

| Bkφ |≤∥ Fλ ∥Lq(R) · ∥ φ̄ ∥Lp(−a,a),

then

∥ Bk ∥q≤ θ(x)

∫ +∞

0

∣∣∣ ∫
E
dv

×
∫ 1

0
dµf(v, µ)g(v, µ) exp

[
− −1

µ

×
∫ x

x′

(
λ− σ(ξ, v)dξ

)]
dµ
∣∣∣qdt.

Since

| ℑλ |q
∫ +∞

ε

∣∣∣ ∫
E
dv

∫ 1

0
dµf(v, µ)

×g(v, µ)θ(x) exp
[
− 1

µ

∫ x

x′

×
(
λ− σ(ξ, v)dξ

)]
dµ
∣∣∣qdt,

is bounded uniformly on Γε, we can get the (87) is
bounded uniformly on Γε.

Now, we prove that (88) is bounded uniformly on
Γε. Since H12 = αT1 + βL1, T1 is compact operator,
it suffices to prove that | ℑλ |∥ KQ+

λL1P2nD
+
λK ∥

is bounded uniformly on Γε.
In fact, for all φ ∈ X , then

KQ+
λL1(βP

+
λ L1)D

+
λK =

θ(x)βnf(v, µ)

∫ a

−a
dx

∫
E
dv′
∫ 1

0
g(v′, µ′)

×f(v′, µ′) exp
[−(2n+ 1)a+ x

µ′

×
∫ x

x′

(
λ− σ(ξ′, v))dξ′

)]
dµ′

×θ(x′)
∫
E
dv′′

∫ 1

−1
g(v′′, µ′′)

×φ(x− sµ′, v′′, µ′′)dµ′′.

Setting

KQ+
λL1(βP

+
λ L1)D

+
λK = E2EnE1,

where

E1 : φ ∈ X → θ(x)

∫
E
dv

∫ 1

−1
g(v, µ)

×φ(x, v, µ)dµ ∈ Lp((−a, a); dx),
E2 : φ ∈ Lp((−a, a); dx) →

θ(x)βnf(v, µ)φ(x) ∈ Xp,

En : φ ∈ Lp((−a, a); dx) →∫ a

−a
dx

∫
E
dv

∫ 1

0
f(v, µ)g(v, µ)

× exp
[ 1
µ

∫ x

x′

(
− λ+ σ(ξ, v)dξ

)
×((2n+ 1)a− x)

]
dµ ∈ Lp((−a, a); dx).

Since operator E1, E2 and En are bounded, moreover
E1 and E2 are independent of λ, so it is easy to prove
that, | ℑλ |∥ En ∥ is bounded uniformly on Γε. This
ends the step three.

Finally, since (63) and equation (62) have the
same form, so we can get the (63) is bounded uni-
formly on Γε. This ends the proof. ⊓⊔

Theorem 4. If assumption O1 and O2 are satisfied,
then for all ε > 0, and big enough |ℑλ|, then the
spectrum of transport operator AH consists of, only,
finite isolated eigenvalues which have a finite algebra-
ic multiplicities in trip Γε.
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Proof. On one hand, because of hypothesis O2 and
Lemma 1 we can get operators K(λI − BH)−1 and
(λI − BH)−1K are compact operator on X . So, for
all λ ∈ Γε, the operator [(λI−BH)−1K]2 is compact
operator on X .

On the other hand, since

[(λI −BH)−1K]2

= (λI −BH)−1[K(λI −BH)−1K],

so, according to the Lemma 1 and Theorem 3, we can
get

lim
|ℑλ|→+∞

∥ [(λI −BH)−1K]2 ∥= 0.

Finally, according to the Lemma 2, the desired result
follows. ⊓⊔
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